joineR - Joint Modelling of Repeated Measurements and Time-to-Event Data

نویسندگان

  • Peter Philipson
  • Peter J. Diggle
چکیده

The joineR package implements methods for analysing data from longitudinal studies in which the response from each subject consists of a time-sequence of repeated measurements and a possibly censored time-toevent outcome. The modelling framework for the repeated measurements is the linear model with random effects and/or correlated error structure. The model for the time-to-event outcome is a Cox proportional hazards model with log-Gaussian frailty. Stochastic dependence is captured by allowing the Gaussian random effects of the linear model to be correlated with the frailty term of the Cox proportional hazards model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی توام داده‌های بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی

Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...

متن کامل

Joint modelling of repeated measurement and time-to-event data: an introductory tutorial.

BACKGOUND The term 'joint modelling' is used in the statistical literature to refer to methods for simultaneously analysing longitudinal measurement outcomes, also called repeated measurement data, and time-to-event outcomes, also called survival data. A typical example from nephrology is a study in which the data from each participant consist of repeated estimated glomerular filtration rate (e...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

Shared parameter models for the joint analysis of longitudinal data and event times.

Longitudinal studies often gather joint information on time to some event (survival analysis, time to dropout) and serial outcome measures (repeated measures, growth curves). Depending on the purpose of the study, one may wish to estimate and compare serial trends over time while accounting for possibly non-ignorable dropout or one may wish to investigate any associations that may exist between...

متن کامل

An approach to joint analysis of longitudinal measurements and competing risks failure time data.

Joint analysis of longitudinal measurements and survival data has received much attention in recent years. However, previous work has primarily focused on a single failure type for the event time. In this paper we consider joint modelling of repeated measurements and competing risks failure time data to allow for more than one distinct failure type in the survival endpoint which occurs frequent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012